Qué se discute en la gobernanza internacional de la IA

Debate sobre la gobernanza internacional de la IA: ¿qué se discute?

La gobernanza internacional de la inteligencia artificial (IA) reúne a gobiernos, organizaciones internacionales, empresas, academia y sociedad civil para definir reglas, normas y mecanismos que orienten el desarrollo y uso de estas tecnologías. Los debates combinan cuestiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se presentan los temas centrales, ejemplos concretos y mecanismos que se proponen o aplican en distintos foros.

Riesgos para la seguridad y la integridad

La atención dedicada a la seguridad abarca errores involuntarios, usos malintencionados y repercusiones estratégicas de gran alcance. Entre los aspectos esenciales se encuentran:

  • Riesgos sistémicos: la posibilidad de que modelos extremadamente avanzados se comporten de manera inesperada o superen los mecanismos de control, comprometiendo infraestructuras críticas.
  • Uso dual y militarización: la incorporación de IA en armamento, sistemas de vigilancia y operaciones de ciberataque. En debates de la ONU y del Convenio sobre Ciertas Armas Convencionales se analizan opciones para regular o incluso vetar sistemas de armas totalmente autónomos.
  • Reducción del riesgo por diseño: estrategias como evaluaciones adversarias, auditorías de seguridad y la exigencia de análisis de riesgo previos a cualquier implementación.

Ejemplo: en el escenario multilateral se debate la formulación de reglas obligatorias relacionadas con SALA (sistemas de armas letales autónomas) y la implementación de mecanismos de verificación destinados a impedir su proliferación.

Derechos humanos, privacidad y vigilancia

La IA genera desafíos para los derechos civiles y las libertades públicas:

  • Reconocimiento facial y vigilancia masiva: posible debilitamiento de la privacidad y aparición de sesgos. Diversos países y la Unión Europea analizan imponer límites o pausas a su implementación a gran escala.
  • Protección de datos: gestión responsable de grandes conjuntos de información para entrenar modelos, junto con aspectos de consentimiento, reducción de datos y procesos de anonimización.
  • Libertad de expresión e información: sistemas de moderación automatizada, creación de contenido engañoso y deepfakes que pueden influir en dinámicas democráticas.

Caso: campañas de desinformación potenciadas por generación automática de contenido han llevado a debates en foros electorales y a propuestas para obligaciones de transparencia sobre el uso de sistemas generativos en campañas.

Equidad, no discriminación y inclusión

Los modelos pueden reflejar o incluso intensificar sesgos existentes cuando los datos de entrenamiento no resultan suficientemente representativos:

  • Discriminación algorítmica: revisiones independientes, indicadores de equidad y procedimientos de corrección.
  • Acceso y desigualdad global: posibilidad de que la capacidad tecnológica se concentre en unas pocas naciones o corporaciones; urgencia de impulsar la transferencia tecnológica y la cooperación para fortalecer el desarrollo local.

Dato y ejemplo: estudios han mostrado que modelos entrenados con datos sesgados dan peores resultados para grupos subrepresentados; por ello iniciativas como evaluaciones de impacto social y requisitos de testeo público son cada vez más solicitadas.

Claridad, capacidad de explicación y seguimiento

Los reguladores analizan cómo asegurar que los sistemas avanzados resulten entendibles y susceptibles de auditoría:

  • Obligaciones de transparencia: comunicar cuando una resolución automatizada impacta a una persona, divulgar documentación técnica (fichas del modelo, fuentes de datos) y ofrecer vías de reclamación.
  • Explicabilidad: proporcionar niveles adecuados de detalle técnico adaptados a distintos tipos de audiencia (usuario final, autoridad reguladora, instancia judicial).
  • Trazabilidad y registro: conservar registros de entrenamiento y operación que permitan realizar auditorías en el futuro.

la propuesta legislativa de la Unión Europea organiza los sistemas por niveles de riesgo y requiere que se entregue documentación exhaustiva para aquellos que se catalogan como de alto riesgo

Responsabilidad jurídica y cumplimiento

La asignación de responsabilidades ante daños generados por IA es un tema central:

  • Regímenes de responsabilidad: debate entre responsabilidad del desarrollador, del proveedor, del integrador o del usuario final.
  • Certificación y conformidad: modelos de certificación previa, auditorías independientes y sanciones por incumplimiento.
  • Reparación a las víctimas: mecanismos rápidos para compensación y remediación.

Datos normativos: la propuesta de la UE contempla sanciones proporcionales a la gravedad, que incluyen multas significativas para incumplimientos en sistemas de alto riesgo.

Propiedad intelectual y acceso a datos

El uso de contenidos destinados al entrenamiento de modelos ha provocado fricciones entre la creación, la reproducción y el aprendizaje automático:

  • Derechos de autor y recopilación de datos: disputas legales y demandas de precisión acerca de si el proceso de entrenamiento representa un uso permitido o necesita una licencia formal.
  • Modelos y datos como bienes estratégicos: discusiones sobre la conveniencia de imponer licencias obligatorias, habilitar el intercambio de modelos en repositorios abiertos o limitar su exportación.

Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.

Economía, mercado laboral y dinámica competitiva

La IA es capaz de remodelar mercados, empleos y la organización empresarial:

  • Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
  • Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
  • Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación.
  • Sostenibilidad ambiental

    El impacto energético y material de entrenar y operar modelos es objeto de regulación y buenas prácticas:

    • Huella de carbono: entrenamiento de modelos muy grandes puede consumir energía significativa; indicadores y límites son discutidos.
    • Optimización y transparencia energética: etiquetas de eficiencia, reporte de consumo y migración a infraestructuras con energía renovable.

    Estudio relevante: diversos análisis han puesto de manifiesto que entrenar modelos de lenguaje de manera intensiva puede llegar a producir emisiones comparables a decenas o incluso cientos de toneladas de CO2 cuando el proceso no se optimiza adecuadamente.

    Regulaciones técnicas, estándares y procesos de interoperabilidad

    La adopción de estándares facilita seguridad, confianza y comercio:

    • Marco de normalización: desarrollo de estándares técnicos internacionales sobre robustez, interfaces y formatos de datos.
    • Interoperabilidad: garantizar que sistemas distintos puedan cooperar con garantías de seguridad y privacidad.
    • Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y foros regionales participan en la armonización normativa.

    Ejemplo: la OCDE elaboró una serie de principios sobre la IA que se han convertido en una guía para numerosas políticas públicas.

    Procesos de verificación, observancia y coordinación multilateral

    Sin mecanismos de verificación creíbles, las reglas quedan en papel:

    • Inspecciones y auditorías internacionales: propuestas para observatorios multilaterales que supervisen cumplimiento y compartan información técnica.
    • Mecanismos de cooperación técnica: asistencia para países con menos capacidad técnica, intercambio de mejores prácticas y fondos para fortalecer gobernanza.
    • Sanciones y medidas comerciales: discusión sobre controles a la exportación de tecnologías sensibles y medidas diplomáticas ante incumplimientos.

    Caso: las limitaciones impuestas al comercio de semiconductores ilustran cómo la tecnología de IA puede transformarse en un asunto de política comercial y de seguridad.

    Instrumentos normativos y recursos aplicados

    Las respuestas normativas varían entre instrumentos vinculantes y enfoques flexibles:

    • Regulación vinculante: leyes nacionales y regionales que imponen obligaciones y sanciones (ejemplo: propuesta de ley en la Unión Europea).
    • Autorregulación y códigos de conducta: guías emitidas por empresas y asociaciones que pueden ser más ágiles pero menos exigentes.
    • Herramientas de cumplimiento: evaluaciones de impacto, auditorías independientes, etiquetas de conformidad, y entornos experimentales regulatorios para probar políticas.

    Gobernanza democrática y participación de la ciudadanía

    La legitimidad de las reglas depende de la inclusión:

    • Procesos participativos: consultas públicas, comités de ética y representación de comunidades afectadas.
    • Educación y alfabetización digital: para que la ciudadanía entienda riesgos y participe en decisiones.

    Ejemplo: en distintos países, varias iniciativas de consulta ciudadana han incidido en las exigencias de transparencia y en las restricciones aplicadas al empleo del reconocimiento facial.

    Sobresalientes tensiones geopolíticas

    La carrera por la primacía en IA implica riesgos de fragmentación:

    • Competencia tecnológica: inversiones estratégicas, subsidios y alianzas que pueden crear bloques tecnológicos divergentes.
    • Normas divergentes: diferentes enfoques regulatorios (más restrictivo versus más permissivo) afectan comercio y cooperación internacional.

    Resultado: la gobernanza global intenta conciliar la armonización regulatoria con la autonomía tecnológica.

    Acciones y referencias multilaterales

    Existen varias iniciativas que sirven de marco de referencia:

    • Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
    • Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
    • Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.

    Estas iniciativas reflejan cómo se entrelazan directrices no obligatorias con propuestas legislativas específicas que progresan a distintos ritmos.

    La gobernanza internacional de la IA se configura como un sistema en constante evolución que ha de armonizar requerimientos técnicos, principios democráticos y contextos geopolíticos. Para que las respuestas resulten efectivas, se precisan marcos regulatorios definidos, procesos de verificación fiables y mecanismos

    Sobre el Autor